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Iterations of Transformations on the Unit Interval: 
Approach to a Periodic Attractor 
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We consider a transformation of the unit interval which exhibits a stable periodic 
attractor and whose topological entropy is positive. We show that the dynamics 
leading to this attractor has a statistical character. 

KEY W O R D S :  Iteration of transformations; attractors; periodic orbits; 
Cantor sets; invariant measure; topological entropy. 

1.  I N T R O D U C T I O N  

We consider  noninvert ible  t rans format ions  of  the unit interval into itself 

T(x ,  )7): x '  = f ( x ,  2-) (1) 

where ~. is a set o f  parameters .  A wel l -known example  o f  such t rans format ions  
has been studied by Metropol is  et al. (t) (MSS), in which ~ reduces to a single 
pa rame te r  ~t and f ( x ,  )~) - 2f(x),  f ( x )  having only one m a x i m u m  inside the 
interval,  and obeying a set o f  fairly general constraints  (see Ref. 1). The 
semigroup of  t rans format ions  T"(x,  2), where 

T" = To To-. .o T 

n times 

is a dynamical  system which associates to any  point  x of  [0, 1] an " o r b i t , "  i.e., 
the set {x, T ( x )  ..... T"(x)}. An orbit  is said to be periodic of  period k if it 
contains  k points,  and if Tk(x)  = x for an orbit  point  x. This orbit  is said to be 
'~  or to be an " a t t r a c t o r "  if the t r ans fo rmat ion  T*(x ,  )~) is contract ing 
in a ne ighborhood  of  any orbit  point.  

The interest for  the physicist o f  t r ans fo rmat ion  (1) is that  it may  generate 
"compl i ca t ed  dynamics , "  in the words of  May,  (2) even if f (x) is quite simple 
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(for instance, quadratic). According to the values of the parameters in {~} 
which control the bifurcations of the dynamical system, the orbit of  a point, 
after a large number of  iterations, may either converge toward a periodic 
attractor or wander erratically in a subset of  [0, 1]. In the latter case, if there 
exists an invariant, nonatomic measure whose support has positive Lebesgue 
measure, this support may be called an "aperiodic attractor." It is important 
to remark  that the character partly deterministic, partly stochastic of the 
dynamics seems to be the rule in the systems encountered in physics (or in 
biology): let us mention Hamiltonian nonintegrable systems and dissipative 
systems such as the Lorenz (5) and Curry (6) models of  convection and Spiegel 
oscillators. (7) 

Let us now recall some typical properties of the quadratic transformation 
T =  2 x ( 1 -  x) (these properties are shared by a subclass of the MSS 
transformations under additional conditions which need not be specified 
here). There are two domains of 2 values where the dynamics is essentially 
different. In the first one ([20, 2c[), there exists a finite number of periodic 
orbits and, among them, a unique periodic attractor with period k = 2 N, N 
going to infinity when 2 ~ 2c (see for instance, Ref. 2-4). In this domain the 
dynamics may be considered as "simple." In the second domain (]2 C, 2max]) 
there is an infinite set of periodic orbits and the topological entropy hr is 
positive. The positiveness of h rmay be looked at as a characteristic feature (a 
definition?) of "complicated dynamics," and the ]).c, )~m,x] domain is 
frequently called "chaotic."  Actually, an aperiodic attractor is to be found for 
an infinite set of 2 values. Unfortunately, these attractors are not structurally 
stable (they are destroyed by an arbitrary small variation of  2). Moreover, 
there are infinitely many values of 2 (probably forming a dense set in 
[2o, 2max] ) where there exists a periodic and structurally stable attractor, For 
these 2 values, the asymptotic dynamics leads the orbit toward a limit cycle (an 
obviously "s imple"  situation), provided the Lebesgue measure of the basin of 
the periodic attractor is unity. 

For  simplicity, we shall consider transformations T(x, )~') for which there 
exists a unique periodic attractor. This is ensured by assuming the negativity 
of its Schwarzian derivative with respect to x (see Ref. 12). In order to rule out 
the possibility of complicated asymptotic dynamics in the range of ~ values 
where the transformation exhibits a periodic attractor, we must first answer 
the question: can we find nontrivial transformations such that the Lebesgue 
measure of  the periodic attractor's basin is unity? It is a rather difficult 
problem to find out the least stringent conditions which ensure that T(X, ~.) 
has this property. In connection with this problem, we mention the Lasota 
theorem, (~~ which may be stated as: if Tis a continuous mapping of  the unit 
interval into itself which has a periodic orbit of period 3, then T admits an 
invariant, nonatomic measure. However, the support of this measure may 
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have zero Lebesgue measure. It is not our purpose in this paper to determine 
the above-mentioned conditions. We only need that they are obeyed by the 
two transformations which we explicitly consider here, namely the quadratic 
and the trapezoidal transformations. In the first case, Smale ~11) showed that 
the limit set of  this system consists of the periodic orbit and of a Cantor set 
with zero Lebesgue measure. In the second case, we show that the Lebesgue 
measure of the periodic attractor's basin is unity. We also show, through a 
straightforward argument in the Appendix, the existence of an open class of 
transformations exhibiting this property. 

Now our problem is the following. Considering a transformation T(x, 2") 
of the above type, i.e., whose the unique attracting object is a periodic orbit 
but whose topological entropy is positive, in what sense can we consider that 
the dynamics has a stochastic character? Clearly, the complexity of  the 
dynamics can only manifest itself in the approach of the attractor (transitory 
regime). The purpose of this paper is to give some insight into that approach, 
and to show that it is indeed of stochastic character. More precisely, we show 
that, assuming initial points x randomly chosen in [0, 1], the dynamics 
generated by iterating T(x,  ~) is very similar to a random walk in l-0, 1] in the 
presence of an absorbing interval. Moreover, the detailed analysis of the 
random approach of the attractor manifests the Cantor structure of the set of  
nonwandering points of the transformation. 

2. S O M E  N O T A T I O N S  A N D  D E F I N I T I O N S  

2.1. Inverses of  Points and Intervals 

The graph of a typical transformation T(x, 2") is shown in Fig. 1. A point 
of [0, 1] has preimages or "inverses" if it lies on the left of  image a of the 
maximum (see the geometrical construction of the inverses of  a point x in Fig. 
1). Defining T -  k(X) = { Y[ Tk(y) = X}, we shall say that y ~ T -  k(x) is an inverse 
of x " o f  order k." Considering an interval [4], we define in the same way 
T-"([~])  = {x[T"(x) ~ [4]}. We observe that 

T-"([~]) = ~) /.,i([~]) 
i = 1  

with m ~< 2", and where I,,i are intervals generated by successive steps 
according to 

Ip+ ,,~j~ = v - l ( I p , k )  

Ip+ 1,~j~ being a set of  0, 1, or 2 intervals whose images by Tare  Ip, k. It is easily 
seen by induction that the I,,i are disjoint intervals: they will be called 
"inverses of  [4] of order n." 
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Fig. 1. Graph of a typical T(x, ,~) transformation. 

2.2. I n v a r i a n t  I n t e rva l s .  " T r a p p i n g  I n t e r v a l "  

Obviously [0, 1] is invariant under a transformation T(x, ~) whose 
unique maximum with respect to x is smaller than one. Let x m be the point 
where Tis maximum and a and a' be respectively T(x,,,) and T2(xm). A smaller 
invariant interval is [A] = [a, a'], and the orbit of any point of the 
complement of [A] reaches [A] after a finite number of iterations (except for 
points 0 and 1). A will be the length of [A], a notation which will be used 
throughout this paper for any interval. 

Let us now consider a periodic attractor of period k generated by a 
"saddle node bifurcation." Varying the relevant parameters in ~, fk(x, 2-) 
comes into contact with the diagonal for some definite value ~o, then crosses 
the diagonal, creating k pairs of fixed points alternately stable and unstable. 
This type of, bifurcations is pictured in Fig. 2. Considering a particular pair of 
fixed points (p, q) together with point (q') which is a nearest inverse of q on the 
left side of p, we see that [6] = [q, q'] is an invariant interval for Tk(x, )~) 
analogous to [0, 1] for T(x, )~. Clearly [q, q'] is a connected component of  the 
basin of attraction of p. Any point x ~ ] q, q'] approaches p monotonically 
after a finite number of  iterations (in the sense that the distance between p and 
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T~k/(x, Al_nx ) T(k)(x, Xl) T/k)(x Xl+SX ) 

q ' q  q' P q x 

Fig. 2. A saddle-node bifurcation around 2 = ~.  

the successive iterates of x by T k decreases monotonically). Each point of the 
attractor is surrounded by such an invariant interval, and the k intervals are 
trivially obtained from one of them by applying the Ttransformation k times. 
When xm belongs to one of these intervals (which is the case when the 
Schwarzian derivative of T is negative, and for the trapezoidal transfor- 
mation), we shall call this interval the "trapping interval" associated with the 
periodic attractor. 

It is natural to distinguish two regimes in the dynamics : in the first one the 
orbit is still outside [6] and may wander erratically in [A] - [6] (" transitory 
stochastic regime"); in rthe second one (x e [6]) the orbit is driven steadily 
toward the fixed points of T (k) ("deterministic regime"). It is interesting to 
remark that, as ~ crosses a bifurcation value, the new-born periodic orbit 
already appears with a finite trapping interval (see Fig. 2). 

Let us now suppose that, for some given ~., the transformation has a 
unique periodic attractor, in addition to a finite set of (unstable) fixed and 
periodic points. In such a situation (encountered for 2 < 2c) where the 
topological entropy h r is null, the orbit of  almost any initial point will reach 
the trapping region after a finite number of iterations. In this case the 
preasymptotic dynamics cannot really be considered as stochastic, and we 
shall therefore disregard the systems where hris not positive. In the following 
we shall support this point of view by displaying the Cantor-set-like structure 
of statistical behavior in the preasymptotic regime for 2 > 2c. 

3. A P P R O A C H  OF A P E R I O D I C  A T T R A C T O R  

3.1. The Case of  the  Trapezoida l  A p p l i c a t i o n  

3.1.1. Prel iminaries. This transformation is defined as 

T~(x,  2") : x '  = f ( x ,  ~.~) 
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when 2 is the set of three parameters 2, I', b and 

2'x, ( 2! <x <b/i' 
f(x, 2)= b, b~ <x< 1-b/i 

2(1 - x), > 1 - b/2 
We first verify that there is no more than one periodic attractor for a given set 
~. indeed, one of the cycle points, say p, must lie inside the plateau [c5] 
= [h', h] where the application is contracting. Then, p is the kth image of  the 
plateau (in the case of period k cycle), and it is obviously unique. The same 
argument shows that [(5] c [6] : If 2 and 2' are both larger than unity, the 
transformation is dilating outside [6]. 

We shall consider first the case k = 3, the orbit points being {p, a, a'} 
shown in Fig. 3. The invariant and trapping intervals are respectively [A] 
= [a', a] and [6] = [q', q]. 

We now show that the basin of the period-3 attractor has Lebesgue 
measure equal to unity. We first remark that the orbit of almost any point in 
[0, 1]/[A] reaches [A], and since [A] is invariant by T, we have to show that 
the measure of the union of the inverses of [6] lying in [A] is A. As we shall see, 

1 
g' C '7 

I 
I 

I 
I 
I 
[ 
I 
1 

q'l~p 0 a' hq a 1 X 
Fig. 3. The trapezoidal transformation Tz(x, I-). 
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this interpretation of A will be very useful for analyzing the stochastic 
dynamics in the "transitory regime." However, a difficulty is that some 
inverses of  [3] are overlapping (an inverse of [3] is to be understood as one of  
the I , , i([6]) defined in the previous section). 

It proves to be more convenient to consider the inverses of the plateau 
[(5], which are disjoint, as we shall see. It is not hard to see that the sum of the 
lengths of [c5] inverses is also A. Indeed, there is a particular set of T -(3n) 

inverses which covers exactly [6]/[d~] : this is shown in Fig. 4. 
Another difficulty is the following: any point in [A] has two inverses, 

except {a}, whose inverse is interval [(5]. We shall bypass this difficulty by 
considering, instead of [d)], the union of  open intervals [(~] 
= ] a ' , p [ w ] p , a [ .  Then, given any x~[c~] ,  the set of  its nth inverses 
{T-"(x)} contains a finite number of points, Vn. We shall now prove the 
following result. 

k e m m a .  The inverses of  [c~] are not overlapping. 

Indeed, let c~ and fl be two inverses of [g)], respectively of order p and k. If 
p = k,  the property is obvious by geometrical construction. I fp  r k (p > k), 
let x e ~ c~ ft. We have Ttz k+ 1)(x) = a. Then, x is an inverse of a, and therefore 
does not belong to an inverse of  [(~]. 

T(k)(x,h 

/ 
fi p h 

Fig. 4. Successive preimages of the plateau [h', hi covering the trapping interval. 
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Let us put F = meas{union of all inverses of [(~] lying in [A1}. 
Using the above lemma, F may be replaced by the sum of the lengths of 

[g)l inverses. We shall give an analytic expression for F(which will be useful in 
the statistical analysis) and verify that F = z~. The orbit points {p, a, a'} 
generate a partition of [zX] - {p, a, a'}, Let [11 = 1P, a] and [2] = ] a ' , p [  be 
the elements of this partition. A point x in [At has one or two inverses in [A] 
according to whether x belongs to [11 or to [2]. Now, given any subinterval 
[t/] in leVI, let c5,, be the sum of the measures of all inverses of order 
( ~  I,,i([r/])) which are found in [1], and Z, the corresponding sum for 
inverses belonging to [2]. We have 

6 . +  1 = (6 .  + Y:.)/2, ~ . +  ~ --  6 . / 2 '  

therefore, the vector X, with components (6,,, Y,,) obeys the recurrence law 

where 

X,+I = (A/2)X,, 

(; 10) A =  ' /~ 2' 

from which X,, = (A/2)"Xo, where Xo is the vector whose components are the 
lengths of ([tt] c~ [1]) and ([t/] c~ [21). Let us remark that the matrix 

= ( I  ~), obtained by setting p = 1 in A, is nothing but the "transition 

matrix" used in symbolic dynamics (cf. for example Ref. 12). <~ permits one 
to calculate the number of inverses of any point in [A1. 

The partition { [ 1 ], [2] } of [A] is a generating partition for evaluating the 
topological entropy hr, and 20, the largest value of A, is equal to e Ar [in this 

case of a period-3 cycle, 2o = (1 + x/5)/2]. We can now evaluate F 

F =  11, ~ , X o  
k = 0  

where Xo = (E, e') and 11 = (1, 1). 
Now (,~ - A/2) is an invertible matrix except if det(I - A/2) = 0, which 

happen if 22' - 2' - 1 = 0, that is, if the trapezium reduces to a triangle (e 
= E' = 0). Disregarding this case, we have 

which gives 

F = [~1, (..~ - A /2 ) -  1Xo1 

2 
F = 2 2 ' ~ '  - 1 I-e(2' + l) + e'2'] 
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The length A of  the invar iant  interval is 

A = 2 ( p  - ~') - 211 - 2 '(p - e')] 

where p, e, r are known functions of  2, 2', b. There exist two relations 
connect ing 2, 2', p,  e, e'. The first one is geometr ical :  2 '(p - e') = 211 - (.p 
+ Q],  while the second one says that  {p} is a fixed point  o f  ~a~: 22'[1 - 2 '(p 
- e')] = p. El iminat ing e and e' between these two relations, we obtain 

22' - 1 +  2 -  b 

as expected. In the case of  a stable orbit  with per iod k > 3, the ingredients o f  
the calculat ion would be the same. The par t i t ion of  [A] would contain k - 1 
elements,  X 0 having nonzero  componen t s  (e and e') on the only two elements 
adjacent  to p [needless to say, inverting the (k - 1) x (k - 1) matr ix  (.~ 
- A/k) is t ractable only for modera t e  values].  

3 .1 .2 .  A p p r o a c h  o f  t h e  P e r i o d i c  A t t r a c t o r .  The aim of  this paper  
is to characterize the r a n d o m  approach  of  the t rapping  interval by averaging 
over  a statistical ensemble of  initial points.  This will be done by considering 
the set o f  t rapping  interval inverses. To  be specific, let us consider first the case 
o f  the t rapezoid applicat ion.  Let Tt be the t r iangular  t r ans fo rmat ion  with the 
same slopes 2, 2' as those of  the previous t rapezium. The orbits  generated by 
i terat ions of  T t and T z are the same as long as they do not  enter  Idol. When  T~ 

T,(e + e' =-, 0) in such a way that  a k periodic a t t rac tor  still exists, the T~ 
dynamics  is the same as the T, dynamics  for  very long times. At  the limit E + e' 
= 0 we recall that  dynamical  system Tt possesses an invar iant  measure,  which 
is cons tant  in the k - 1 intervals delimited by the points  o f  the k orbit. For  
finite e + e' (or finite [61) the average lifetime ( n )  o f " c h a o t i c  d y n a m i c s "  will 
be defined as the average number  of  i terations after which the orbit  o f  an 
initial point ,  chosen at r a n d o m  in [A] with un i form probabil i ty ,  reaches [6]. 
In the same way, we define the rth m o m e n t  @r) ,  and more  generally the 
probabi l i ty  law P(n) of  r a n d o m  variable n. The P(n) will be determined by the 
measures  of  the inverses of  [61, and we can find an analytical  expression for  it 
in the case of  the T z t r ans fo rmat ion  (and for  other  suitable polygonal  
t ransformat ions) .  Fo r  the reasons given in the previous section, we prefer to 
consider the inverses of  [~)]. There results a slight change in the above  
definition o f  P(n), which is relatively un impor tan t ,  because the approach  of  
the stable fixed point  in [6] by T (k) is monotonic .  Therefore,  the orbits o f  mos t  
o f  the points  in ([6] - [(~]) reach [ ~ ]  after  few iterations of  T(z k). 

As was said above,  the orbit  points  o f  a k periodic a t t rac tor  delimit a 
natural  par t i t ion of  [A] in k - 1 intervals, and a (k - 1) x (k - 1) matr ix  A 
associated with this part i t ion.  The expectat ion value of  r a n d o m  variable n r 
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will clearly be expressed in terms of A as 

t 
with the same notation as in the preceding section; this can be generalized to 
the general case of  a k periodic orbit. 

Putting 2 = e-5, we can write 

1 ~?r 
- A c~z r [.3, (.3 - eZA) - 1Xo~ ] (3) 

1 Or 
<n'> . . . .  G(z, ~, e') 

G 8z r 

where G(z, (, E') = U(e -~, e, ( )  = A(e -z, e, ( )  according to the result of  the 
previous section. 

A consequence of Eq. (3) is that A(e -~, e, ( )  plays the role of  the 
generating function of probability law P(n). Let us indeed evaluate the 
expectation value of e -s ' ,  where s is an arbitrary complex number, and 
looking at n as a positive real number. We have 

<e-S">C,(z) = C(z)  e -S"p(n)  dn : G(z) 1 + ~ <nr> = G(z -- s) 
r : l  

with the help of  Eq. (3). 
Therefore, G(z - s) appears as the Laplace transform of G(z)P(n) ,  or 

l ;  
P(n) = ~ e~"a(z - s) ds (4) 

where (C) is the Bromwhich contour of  the inverse Laplace transform in the 
complex s plane. Equation (4) can also be written as 

1 
f c  e~"A(2e~' e, e') P(n) - A(2, ~, r ds 

Let us consider, for simplicity, the case of  a symmetric transformation (e 
= E', 2 = 2') and of a period-3 attractor. Then we have 

c 2(22 + 1) 
A(L E) - 

222 - - 2 - -  1 
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and P(n)  takes the form 

e f eS . fieS(22e~ + 1) 
P(n) - 2A(fl, e~ ,a~ flZe2s - 2e~ - 1 ds 

The poles of the integrand are given by 

2e' = _ 1/2o 

where 2 o = (1 + ~ / 2 ) .  The integration over s is trivial, since it only contains 
the contribution of these poles. One obtains 

P(n)  = 2(22 ~2 i)-(~-o + 2) (320 + 2) + (2 - 20) - 
\ ,  O / A 

the first moment ( n )  being given by 

(2 + 1)(32 + 1) 20 
('> = 2 P .  = . (24 -t- 1)()~ 2 - -  2 - -  1 )  ~ 2 - -  4 0 

We notice that P(n) ,  and therefore (n) ,  is independent of  e, or, equivalently, of 
parameter b. Varying 2 in the above formulas means that we change the 
geometry of  the trapezium. The arbitrariness in the choice of the b value is, 
however, limited by the fact that we demand the existence of a 3-cycle. 

Now, since 2 > 40 > 1, we see that P(n)  - + , ~  ~ (2o/2)", with 40 = e hr. This 
result could be expected in the case of  symmetric T~, since A = A. The poles of 
G(z - s) are the roots ofdet].~ - 2e~AI = 0, and the largest one is given by 2e * 
= largest eigenvalue of .4. This argument shows that the large-n behavior of 
P(n) is general, not depending on the order k of the periodic attractor. 

In the limit e---, 0, 2 ~ 2o, which is the slope of  the associated T, 
transformation. Then 2 - 40 ~ ~ ~ 6 and we have 

P(n) ~ (1 + ~6)-" (c~ finite numerical factor) (5) 
n ~ o o  

(n )  ~ 1/3 (6) 

It is easily seen that formulas (5) and (6) also hold for nonsymmetric T z (in the 
case of  a period-3 attractor one finds 

P(n)  ~ [ !  + (1 + 4#)1/2]" 

which takes the form (5) in the limit e + e' ~ 0). 
Expressions (5) and (6) show that, for small 3, P(n)  is not peaked around 

(n) ,  but widely spread out. Such a type of  law would be obtained in the case of  
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a random walk in [A] with independent finite-amplitude jumps, and in the 
presence of an absorbing interval [6]. This already suggests a stochastic 
behavior of the orbits in the preasymptotic region. However, it is not sufficient 
to characterize the dynamics in the chaotic region, where h r > 0. A more 
specific feature of the stochastic behavior will be shown by considering a 
partition of [A] which refines the basic partition determined by the points of 
the periodic attractor, i.e., each element a~ of which is contained in one element 
of the previous partition. We ask for the probability law P, , (n)  associated with 
element ai, that is, the probability of reaching the trapping region after n 
iterations, knowing that the initial point was chosen in ai with uniform 
probability. An interesting partition is generated by the inverse of the fixed 
point p lying in [A]. As an example, a partition containing the five first iterates 
ofp  is shown on Fig. 5 in the case of a period-3 attractor and symmetric ~ .  
The matrix A corresponding to this partition is 

(! 0 0 0i) 0 0 0 

A =  0 0 1 

0 0 1 

1 1 0 

It is clear that the generating function of P~,(n) will be the measure A,.,(2, e) of 
element a i, namely 

A,,  = ['~a,, (.3 - A / i t ) - 1 S o l  

where .3,, = (0, 0,..., 1, 0,...), the nonzero component being the ith. 
Again, the large-n behavior of P,i(n)  will be associated with the largest 

eigenvalue of A. But the new partition is, as the previous one, a generator of 
topological entropy (because the inverses of any ak all belong to an element of 
the partition). Therefore, the largest eigenvalue of A is still e hr, and the large-n 
behavior of P~ is the same as that of P(n). This is true whatever the order N 
of the partition (i.e., the number N ofp's  inverses we use). When N-~ o0 the 
lengths of most of the al go to zero (not uniformly over the {a~} set), while the 
points limiting these elements get closer and closer to the unstable fixed points 
of the various iterates of T z. In other words, the set of a~ boundaries converge 
toward the set of nonwandering points of Tz. The similarity of asymptotic 
laws P, , (n)  at large N clearly manifests the Cantor structure of this last set. 

3.2. The  Case of  a C 2 T r a n s f o r m a t i o n  

Let us first point out a pathological feature of the trapezoidal transfor- 
mation : S is always larger than the length E + E' of the trapezium's plateau. 
Considering for simplicity the symmetric transformation T~(2, E), and letting 2 
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1 

~ f ( x )  / 
/ 

1 

0 a' 

/ \ / 

\ 

2 3 4 5 ~ . 

p a 1 X 
Fig. 5. Partition of the invariant interval generated by the inverses of periodic point p (case of 

period-3 cycle). 

vary in [20, 2m,x] while e is fixed, we shall observe successively the various 
stable periodic orbits of  the MSS sequence, each with a trapping domain 
larger than e. If  e has not been chosen too small, all these cycles will be 
"conspicuous" (according May's terminology) and the average lifetime of 
"transitory dynamics" will be finite, whatever the period of  the cycle. This 
situation is exceptional and does not occur if the transformation is con- 
tinuously differentiable in [0, 1], provided the maximum of T(x, 2) is not too 
flat. Indeed, for a cycle with high period k, the transformation is dilating in the 
neighborhood of most of the points of the periodic orbit. Then, the chain rule 
for calculating the derivatives of T(k)(x, 2) shows that the curvature of 
T(k)(x, 2) is in general very large in the neighborhood of x = p. Therefore, the 
width of the trapping zone is usually vanishingly small for large k, and the only 
observable periodic attractors will be the first ones [by "observable" we mean 
that they can actually be seen, taking account of the unavoidable fluctuating 
perturbations superimposed on the deterministic transformation either in a 
computer experiment or in a physical system whose evolution is modeled by 
T(x, 2)3. 
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8 ~ T(x ~.) : x ~  ~,x (1-x ~ 
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log P~n) * ' " " ~  ~= 3.83187 
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<n> = 27 
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Fig. 6 

In the case of differentiable transformations, we can no longer evaluate 
analytically the Pa,(n). However, it is natural to conjecture that their large-n 
behavior is of the same type as for the T~ transformation [properties (5), (6)-I. 
We have verified this conjecture numerically with a good approximation on 
T(x, 2 ) =  2 x ( 1 -  x) and for 2 = 3.6275 (period-3 cycle) and 2 = 3.4057 
(period-5 cycle: RLZR, according to the MSS notation). P(n) has been 
determined by counting the number of iterations leading to the orbit of a point 
of [A] in the trapping interval, and by averaging over about l06 points in [A]. 
We have verified that (n)  is nearly proportional to 6-1 and that log P(n) 
varies linearly with a slope of the order of 6 (see Figs. 6 and 7). 

log P(n~ 

8 

T(xk~:x~kx(l-x) 
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,,~ = 3.9057 
8 =0.0112 
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Fig. 7 
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A P P E N D I X  

T h e o r e m .  Let T(x, fO be a transformation of the unit interval into itself 
and such that (i) there exists a unique periodic attractor with a trapping 
interval (i.e., xm belongs to one of the periodic point's invariant neigh- 
borhood);  (ii) the following is true: 

f--~ f ( x '  > {xlx ~ [o, 11/[6]} z) 2 in 

Then the measure of the attractor's basin is unity. 

Proof. Let us consider an interval [h] in [0, 1] with finite length and such 
that [h] ~ [6] = {0}. The successive images T~")([h]) are such that all points 
of [hi have distinct images as long as T(")([h]) does not contain xm. Since 
x,, E [6], and since the transformation is dilating for x ~ [0, 1]/[61, the lengths 
of successive images of [h] increase with n as long as T(")[h] E [0, 11/[61. 
Therefore, 3n 1 such that T~"')(Eh] c~ [6] = [4,,] 4 = {0} (eventually [~,,] 
= [ 6 ] ) .  

Let {h,,} = T("')([h]) - [ ~ ? 1 1 1 ,  There exists a unique interval [a l ]  such 
that [al]  = T-" ' ( [6 ]  c~ [h]), and we may write {h.,} = T~"')([h] - tal l) .  The 
t a l l  is the set of points of  [hi whose images by T ("') fall in [6]. 

{h,, } is a set of intervals belonging to [0, 1 ] / [6];  therefore 3n2 such that 

We put 

T(n2-nl)({hni})  (~ [6 ]  = [~?121 :~ {0}  

{ h .= }  = T ( " = - " ' ) ( { h . , } )  - [ ~ . ~ ]  = T~"= ) ( [h ]  - [ a , ] )  - [~ .=1 

There exists [ a2 ]  such that 

{h .~ }  = T ( " z ) ( E h ]  - [ a , ]  - [ a 2 ]  ) 

and so on: We obtain in this way the sets {nl, n2 . . . . .  rig}, [ a l 1  , [ a2 ]  ... . .  [ak]  ; 
{h.l}~, .... {h.~}, with 

{ h . . }  = T ~ " ~ ( D ]  - [ a , ]  . . . . .  [ a J )  

{r/k} = [h] - [a l ]  . . . . .  [ak] is the subset of [h] whose orbit points do not 
reach [6] after n k iterations. 

The successive images of  intervals contained in {r/k} may overlap. Let us 
consider two disjoint intervals [ql] and [qj] belonging to TV({r/,}). We may 
write 

[q~]  = [a i2  + [ b i ] ,  [ q i ]  = [ a j ] +  [ b i ]  
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where  

But  

where  

T([al] ) = T ( [ a j ] )  = T([qi]) c~ T([qy])  = [qiy] 

M e a s  T([qi ] + [q j ] )  > qlj + c~(bl + b j) 

c~ = inf{l#T/c3xl: x (~ [~]} 

N o w  if  al = sup(a / ,  a j), we have  aij > eai > �89 + a.i). T h e r e f o r e  

M e a s  T( [q l ]  + [qj ] )  > �89 + qj) 

a n d  T(P+l)({qk}) > lo~T(P)({qk}) , f r o m  which  h,k > (Cg/2)"kt/k or  t]k < (~/2) T M  

( the las t  i nequa l i t y  fo l lows  f r o m  the ev iden t  fac t  t h a t  h,~ < 1). The re fo re ,  7 
< (~/2)-"~.  But  since cq2 > 1 (by  hypo thes i s ) ,  ~n k such t h a t  (~/2)-"~ < y, 

which  is c o n t r a d i c t o r y .  T h e r e f o r e  7 = 0. Q E D  
The  e x t e n s i o n  o f  the  d e m o n s t r a t i o n  to  the  case  w h e r e f ( x )  is m a x i m u m  o n  

an  in t e rva l  is t r iv ia l .  
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